

Mark Scheme (Results)

June 2011

GCE Statistics S4 (6686) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025 or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA028843
All the material in this publication is copyright
© Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- · dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

June 2011 Statistics S4 6686 Mark Scheme

	Wark Screene	
Question Number	Scheme	Marks
1.	$P(F_{8,10} > 3.07) = 0.05$ So need $P(F_{10,8} > x) = 0.01$ so $x = 5.81$	B1
	So $a = \frac{1}{5.81} = 0.172$ awrt_0.172	B1 2
2.	$s_p^2 = \frac{6s_x^2 + 3s_y^2}{9}$ (=192.03)	M1
	$1.735 < \frac{9s_p^2}{\sigma^2} < 23.589$	B1M1B1
	So 99% confidence interval is (73.26, 996.14) awrt (73.3 . 996)	A1 5
Notes:	1 st M1 for attempting s_p^2 1 st B1 for 1.735 (or better) 2 nd M1 for use of $\frac{9s_p^2}{\sigma^2}$, follow through their s_p^2 2 nd B1 for 23.589 (or better) A1 for both values correct to awrt 3 sf	

O a a tila ia		ing tearning, changing tiv
Question Number	Scheme	Marks
3.	d = B - A:1, 2, 3, -1, 3, -1, -2, 2	M1
	$\overline{d} = 0.875$	M1
	$s_d^2 = \frac{33 - 8 \times 0.875^2}{7} = (3.8392)$	M1
	$H_0: \mu_d = 0$ $H_1: \mu_d > 0$	B1
	$t_7 = \frac{0.875}{\frac{s_p}{\sqrt{8}}} = 1.263 \text{ awrt } \underline{1.26}$	M1A1
	$t_7(10\%)$ one tail critical value is <u>1.415</u>	B1
	Not significant. There is insufficient evidence to support the claim of manufacturer <i>B</i> or machine <i>B</i> does not produce more juice (than machine <i>A</i>)	A1 8
	$1^{\text{st}} M1$ for attempting the ds $2^{\text{nd}} M1$ for attempting \overline{d}	
	3^{rd} M1 for attempting s_d or s_d^2	
	4 th M1 for attempting the correct test statistic	
	3^{rd} A1 contextual statement only required. Allow The juice provided by machine <i>A</i> is the same as by machine <i>B</i>	
	NB 2 sample test can score 3/8 M0 M0	
	M1 $\frac{7 \times 9.27 + 7 \times 16.79}{14}$	
	B1 for $H_0: \mu_A = \mu_B H_1: \mu_A < \mu_B$	
	M0 A0 B1 1.345 A0	
	AU	

Question Number	Scheme	Ma	rks
4. (a)	[$X = \text{no. of incorrectly addressed letters.} X \sim B(40,0.05)$] $P(X > 3) = 1 - P(X \le 3), = 1 - 0.8619 = 0.1381$ awrt <u>0.138</u>	M1, A1	(2)
(b)	P(Type II Error) = P($X \le 3 p = 0.10$) = 0.4231 awrt	M1 A1	(2)
(c)	Power = 1 - P(Type II error) so $s = 0.58 (0.5769)$	B1	(1)
(d)	$Y = \text{no. of incorrectly addressed letters in a sample of 15.} Y \sim B(15, 0.05)$ Size = $P(Y \ge 2) + P(Y = 1) \times P(Y \ge 2)$ = $[1 - 0.8290] \times [1 + 0.8290 - 0.4633]$ = 0.23353 awrt	M1 A1 A1	(3)
(e)	(use overlay)	B1B1	(2)
(f)	$2^{\rm nd}$ consultants test is quicker (since it uses fewer letters) $2^{\rm nd}$ / consult test is more powerful for $p < 0.125$ (and values greater than this should be unlikely)	B1 B1	(2) 12
Natage			
Notes: (a)	M1 for 1- $P(X \le 3)$ and $X \sim B(40, 0.05)$		
(b) (c) (d) (e)	M1 for a correct interpretation of P(Type II error) B1 must be 2dp M1 for a correct strategy 1 st A1 for a correct numerical expression 1 st B1 for correct points (accept ± one 2mm square) 2 nd B1 for curve		
(f)	1 st B1 for selecting 2 nd test 2 nd B1 for a suitable supporting reason eg more powerful for small values of <i>p/p</i> around 0.05		

Question Number	Scheme	Marks
5. (a)	$s_x^2 = \frac{1559691 - 6 \times \left(\frac{3059}{6}\right)^2}{5} = 22.1666$	M1
	$H_0: \sigma_x^2 = \sigma_y^2 \qquad H: \sigma_x^2 \neq \sigma_y^2$ $\frac{s_x^2}{s_y^2} = 1.895$	B1 M1
	$F_{5,4} = 6.26$	B1
	$\frac{{s_x}^2}{{s_y}^2}$ = 1.895 awrt <u>1.90</u> and comment : not significant - variances of <u>weights</u> of the two <u>boxes</u> can be assumed equal.	A1
	equal.	(5)
(b)	$\overline{x} = 509.833 \Rightarrow \overline{x} - \overline{y} = 5.03333$ $s_p^2 = \frac{5s_x^2 + 4s_y^2}{9} = 17.513$ awrt	M1 M1A1
	5% two tail t value is $t_9 = 1.833$ 90% confidence interval is $5.03\pm 1.833 \times \sqrt{17.513} \times \sqrt{\frac{1}{6} + \frac{1}{5}}$ (0.388, 9.6782) awrt (0.388,	B1 M1 A1, A1
(c)	Zero is not in CI, there <u>is</u> evidence to <u>reject</u> the manufacturer's claim Or the weight of the contents of the boxes has changed.	(7) B1ft, B1ft (2) 14
Notes: (a)	1^{st} M1 for use of the correct formula for s_x^2 with reasonable attempt at $\sum x^2$ and $\sum x$ 2^{nd} M1 for use of the correct test statistic. Allow use of 3.42 instead of 3.42 ² . Top must be their variance.	
(b)	$1^{\rm st}$ M1 for attempting $\overline{x} - \overline{y}$ can follow through their \overline{x} $2^{\rm nd}$ M1 for attempt to find pooled estimate of variance $3^{\rm rd}$ M1 for use of correct formula for CI allow any t value and ft their \overline{x} and s_p	

Question Number	Scheme	Ma	arks
6.			
(a)	$E(Y^m) = \frac{n}{\beta^n} \int y^m \times y^{n-1} dy =, \left[\frac{n}{\beta^n} \times \frac{1}{m+n} \times y^{m+n} \right]_0^{\beta}$	M1, A1	
	$= \frac{n}{\beta^m} \times \frac{1}{m+n} \times \beta^{m+n} = \frac{n}{m+n} \beta^m (*)$	A1cso	
			(3)
(b)	$E(Y) = \frac{n}{n+1}\beta$	B1	
	7/ 1		(1)
(c)	$E(Y^2) = \frac{n}{n+2}\beta^2, Var(Y) = E(Y^2) - [E(Y)]^2$	B1,M1	
	$\operatorname{Var}(Y) = \frac{n}{n+2}\beta^2 - \frac{n^2}{(n+1)^2}\beta^2 = \frac{n}{(n+1)^2(n+2)}\beta^2 (*)$	A1cso	(2)
			(3)
(d)	As $n \to \infty$ E(Y) $\to \beta$, Var(Y) $\to 0$	M1,A1	
	So $Y \underline{\text{is}}$ a consistent estimator for β .	A1	(3)
(e)	$k = \frac{n+1}{n}$	B1	
,	n		(1)
(f)	$Var(M) = 4Var(\overline{X}) = 4\frac{\sigma^2}{n} = \frac{4}{n} \times \frac{\beta^2}{12} = \frac{\beta^2}{3n}$	B1	
	$Var(M) = 4Var(\overline{X}) = 4\frac{\sigma^2}{n} = \frac{4}{n} \times \frac{\beta^2}{12} = \frac{\beta^2}{3n}$ $\frac{(n+1)^2}{n^2} \times \frac{n}{(n+1)^2(n+2)} \beta^2 = \frac{\beta^2}{n(n+2)} < \frac{\beta^2}{3n} \text{ so } S \text{ is better } (n > 1)$	M1A1	
			(3)
(g)	Max = 9.1, $s = \frac{6}{5} \times 9.1 = \underline{10.9(2)}$	M1A1	
			(2) 16

Question Number	Scheme	Marks
Notes:		
(a)	M1 for attempt to integrate $y^m f(m)$ 1 st A1 for correct integration (limits not needed yet) 2 nd A1 for use of correct limits and proceeding to printed answer. No incorrect working seen.	
(c)	M1 for use of their $E(Y)$ and $E(Y^2)$ in a correct formula for $Var(Y)$	
(d)	M1 for examining both $E(Y)$ and $Var(Y)$ for $n \to \infty$ 1^{st} A1 for correct limits for both the above 2^{nd} A1 for a correct statement following correct working	
(f)	M1 for attempting Var(S)	
(g)	M1 for correct use of <i>S</i> to find estimate	
7. (a)	$(2072)^2$	
	$s_x^2 = \frac{214856 - 20 \times \left(\frac{2072}{20}\right)^2}{19} = 10.357$ awrt	B1
	$\frac{10.4}{\text{H}_0: \sigma = 2.8 \text{ (or } \sigma^2 =)} \text{H}_1: \sigma \neq 2.8 \text{ (or } \sigma^2 \neq)}$ $\frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{19} \text{test statistic} = 25.102 \qquad \text{awrt}$	B1
	$\frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{19} \text{test statistic} = 25.102$ $\frac{25.1}{25.1}$	M1A1
	$\chi_{19}^2(0.025) = 32.852$, $\chi_{19}^2(0.975) = 8.907$ Not significant so no evidence of a change in standard deviation	B1B1
		A1
		(7)

Question	Scheme	Marks
Number (b) (i)	$H_0: \mu = 102.3$ $H_1: \mu \neq 102.3$	B1
(0) (1)	$z = \frac{\frac{2072}{20} - 102.3}{\frac{2.8}{\sqrt{20}}} = 2.0763$	M1A1
	rt 2.08 Critical value is z = 1.06 or evert 0.010 < 0.025	B1
	Critical value is $z = 1.96$ or awrt $0.019 < 0.025$ So a significant result, there is evidence of a change in mean length	A1ft
(ii)	$t = \frac{\frac{2072}{20} - 102.3}{\sqrt{\frac{10.357}{20}}} = 1.8064$	M1A1
	aw rt <u>1.81</u>	
	Critical value of $t_{19} = 2.093$	B1
	Not significant, there is insufficient evidence of a change in mean length	A1
		(9)
(c)	(a) suggests that σ is unchanged so can use $\sigma = 2.8$ so normal test can be used	B1ft
	So using (i) conclude that there is evidence of an increase in mean length	B1ft
		(2) 18
Notes:	M1 Common of the	
(a) (b)	M1 for use of the correct test statistic 1 st and 2 nd M1 for use of correct test statistics	
(c)	1 st B1 for reason for selecting (i) or (ii) based on their conclusion	
	from test in (a). 2 nd B1 For a final conclusion about mean lengths based on their (a)	
	and (b)	
	NB if both conclusions are the same it needs to be clear they have chosen (i)	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467

Fax 01623 450481

Email <u>publication.orders@edexcel.com</u>

Order Code UA028843 June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

